
Eur. Phys. J. C 51, 899–912 (2007) THE EUROPEAN
PHYSICAL JOURNAL C

DOI 10.1140/epjc/s10052-007-0340-5

Regular Article – Theoretical Physics

The microcanonical ensemble
of the ideal relativistic quantum gas
F. Becattinia, L. Ferroni
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Abstract. We derive the microcanonical partition function of the ideal relativistic quantum gas of spinless
bosons in a quantum field framework as an expansion over fixed multiplicities. Our calculation generalizes
well known expressions in the literature in that it does not introduce any large-volume approximation and
it is valid at any volume. We discuss the issues concerned with the definition of the microcanonical ensemble
for a free quantum field at volumes comparable with the Compton wavelength and provide a consistent pre-
scription for calculating the microcanonical partition function that is finite at finite volume and yielding the
correct thermodynamic limit. Besides an immaterial overall factor, the expression obtained turns out to be
the same as in the non-relativistic multi-particle approach. This work is an introduction to the derivation of
the most general expression of the microcanonical partition function fixing the maximal set of observables
of the Poincaré group.

1 Introduction

The microcanonical ensemble of the relativistic gas is
a subject that has not received much attention in the
past. The reason of the scarce interest in this problem is
the peculiarity of the physical applications, which have
been essentially confined within statistical approaches to
hadron production and the bag model [1]; these are in-
deed the only cases in which the volumes and particle
numbers involved are so small that microcanonical correc-
tions to average quantities become relevant. Otherwise, the
involved energies or volumes are so large that canonical
and grand-canonical ensembles are appropriate for most
practical purposes (e.g. in relativistic heavy ion collisions).
Recently [2], it has been pointed out that the equivalence,
in the thermodynamic limit, between grand-canonical,
canonical and microcanonical ensembles does not apply to
fluctuations; or more in general: to moments of multiplicity
distributions of order > 1. Indeed, the effects of the differ-
ence between statistical ensembles might be unveiled by
studying multiplicity distributions in relativistic nuclear
collisions [3]. In view of these phenomenological applica-
tions, it would be desirable to have an in-depth analysis of
the microcanonical ensemble of a relativistic quantum gas.
The main difficulty in tackling this problem stems from

the need of imposing a finite volume. This is necessary in
order to have a correct thermodynamic limit because, the
energy E being finite by construction, also V must be fi-
nite if the limit with E/V fixed is to be taken. Strange as
it may seem, a full and rigorous treatment of the relativis-
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tic microcanonical ensemble of an ideal gas at finite volume
is still missing. In all previous works on the subject, at
some point, the large-volume approximation is introduced;
this is tacitly done, for instance, considering the single-
particle level density as continuous, namely replacing sums
over discrete quantum states with momentum space inte-
grations [4]:

∑

k

→

∫
d3p . (1)

In a previous work [5], we have derived an expression of
the microcanonical partition function of an ideal relativis-
tic quantum gas with explicit finite-volume corrections (see
(23) and (24)). However, that expression was obtained in
an essentially multi-particle first-quantization framework,
which, as pointed out in [6], should be expected to be-
come inadequate at very low volumes, comparable with the
Compton wavelength of particles. In this regime, under-
lying quantum field effects should become important, and
pair creation due to localization is an unavoidable effect [7].
Indeed, there are several studies of the microcanonical en-
semble of a free quantum field [8–10], but all of them,
again, at some point invoke a large-volume approximation.
In the limit of large volumes one obtains the same expres-
sions of the microcanonical partition function and, conse-
quently, of statistical averages as in the first-quantization
multi-particle approach followed in [5].
The aim of this work is to derive a general expression

for the microcanonical partition function in a full relativis-
tic quantum field framework, valid for any finite volume,
generalizing the results obtained in [5]. We will do this for
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the simplest case of an ideal gas of spinless bosons and
postpone the treatment of particles with spin to a forth-
coming publication [11]. We will show that the expression
of the microcanonical partition function obtained in [5] in
a non-relativistic multi-particle approach holds, provided
that a consistent prescription of subtracting terms arising
from field degrees of freedom outside the volume consid-
ered is introduced.
The paper is organized as follows: in Sects. 2 and 3 we

will argue for general features of the microcanonical en-
semble for a relativistic system and discuss several issues
concerning a proper definition of the microcanonical parti-
tion function. In Sect. 4 we will cope with the further issues
related to the definition of a microcanonical ensemble for
a quantum field at finite volume. Sections 5 and 6 include
the main body of this work, where the microcanonical par-
tition function is worked out in a quantum field theoretical
framework. In Sect. 7 we will give a summary and discuss
the results.

2 On the definition of the microcanonical
partition function

It is well known that the fundamental tool for the calcula-
tion of statistical averages in any ensemble is the partition
function. For the microcanonical ensemble one has to cal-
culate themicrocanonical partition function (MPF), which
is usually defined as the number of states with a definite
value E of the total energy:

Ω ≡
∑

states

δ(E−Estate) . (2)

For a quantum system, the MPF is the trace of the opera-
tor δ(E− Ĥ):1

Ω = trδ(E− Ĥ) , (3)

with a proper normalization of the basis states. For in-
stance, for one non-relativistic free particle, one has to cal-
culate the trace summing over plane waves normalized so
as to have 〈p|p′〉= δ3(p−p′):

Ω = tr(E− Ĥ) =
∑

p

δ

(
E−

p2

2m

)
〈p|p〉

=
1

(2π)3

∫
d3x

∫
d3p δ

(
E−

p2

2m

)
. (4)

Thereby, one recovers the well known classical expression
implying that the MPF is the number of phase space cells
with size h3 and given energy E. This number is infinite
as the volume is unbounded and it is thus impossible to
calculate a meaningful thermodynamic limit at finite en-
ergy density. Hence, one usually considers a system con-
fined within a finite region by modifying the hamiltonian

1 Throughout this work quantum operators will be distin-
guished from ordinary numbers by the symbol .̂

Ĥ with the addition of infinite potential walls, i.e. setting
Ĥ ′ = Ĥ+ V̂ , where Ĥ is the actual internal hamiltonian
and V̂ an external potential implementing infinite walls.
Classically, this leads to a finite Ω, namely:

Ω =
V

(2π)3

∫
d3pδ

(
E−

p2

2m

)
, (5)

where V is the volume of the region encompassed by the
potential walls.2 Also the corresponding quantum problem
can easily be solved, and one has

Ω = tr(E− Ĥ ′)≡
∑

k

δ

(
E−

k2

2m

)
, (6)

where the sum runs over all wave vectors k, which, for
a rectangular box with side Li and periodic boundary con-
ditions, are labeled by three integers (n1, n2, n3) such that
ki = niπ/Li. The difficulty of the quantum expression (6)
with respect to the classical one (5) is that, for a given en-
ergyE, a set of integers fulfilling the constraint imposed by
the Dirac δ,

π2

2m

(
n2x
L2x
+
n2y

L2y
+
n2z
L2z

)
=E ,

in general does not exist. Therefore, the MPF vanishes
except for a discrete set of total energies, for which it is di-
vergent. One has a finite result only for the integral number

of states
∫ E′
0
dEΩ(E); that is, the number of states with

an energy less than a givenE′, but this is clearly a stepwise
and non-differentiable function of E′.
This holds for an ideal gas of any finite number of par-

ticles: strictly speaking, the MPF cannot be defined at
finite energy and volume as a continuous function. Only
in the thermodynamic limit E→∞ and V →∞ an ex-
pression like (6) becomes meaningful, because it is then
possible to replace the sum over discrete levels with a phase
space integration:

∑

cells

−→
V→∞

V

(2π)3

∫
d3p . (7)

Therefore, for a truly finite quantum system, one needs
a better definition of the microcanonical partition func-
tion. A definition which does not suffer from the previous
drawbacks is the following:

Ω = trV δ(E− Ĥ)≡
∑

hV

〈hV | δ(E− Ĥ) |hV 〉 , (8)

where Ĥ is the internal hamiltonian, without external con-
fining potential, and the |hV 〉 form a complete set of nor-
malized localized states, i.e. a complete set of states for the
wavefunctions vanishing outside the region V . It should be
stressed that these states are not a basis of the full Hilbert

2 We will use the same symbol V to denote both the finite
region and its volume.
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space, because wavefunctions that do not vanish out of V
cannot be expanded in this basis; therefore we have the no-
tation trV instead of tr, meaning that the trace in (8) is not
a proper one. The difference between (8) and a definition
like (3) is that the |hV 〉 are not eigenstates of the hamilto-
nian Ĥ and the right hand side of (8) does not reduce to
a discrete sum of δs. In fact, this is crucial to have a contin-
uous function of E, unlike (6).
As an example, let us work out the definition (8) for the

single free particle confined in a rectangular box by infi-
nite potential walls and compare it to (4). A complete set
of states for this problem is

|k〉=

⎧
⎪⎪⎨

⎪⎪⎩

1√
V
exp(ik ·x) if x ∈ V,

k= πnx/Lxπî+ny/Lyĵπnz/Lzk̂ ,

0 if x /∈ V .
(9)

Therefore, the MPF definition (8) implies that

Ω =
∑

k

〈k| δ(E− Ĥ) |k〉

=
∑

k

∫
d3p| 〈k|p〉 |2δ

(
E−

p2

2m

)
, (10)

where we have inserted a resolution of the identity by using
a complete set of states for the full Hilbert space. The sum
in (10) can be calculated and yields

∑

k

| 〈k|p〉 |2 =
∑

k

1

V (2π)3

∣∣∣
∫

V

d3x exp[i(k−p) ·x]
∣∣∣
2

=
∑

k

1

V

∫

V

d3x

∫

V

d3x′ exp[ik · (x−x′)]

× exp[−ip · (x−x′)]

=
1

(2π)3

∫

V

d3x

∫

V

d3x′δ3(x−x′)]

× exp[−ip · (x−x′)] =
V

(2π)3
, (11)

where the completeness relation in V ,

∑

k

1

V
exp[ik · (x−x′)] = δ3(x−x′) , (12)

has been used. Thus, by using (11), (10) turns into

Ω =
V

(2π)3

∫
d3pδ

(
E−

p2

2m

)
; (13)

that is, the same expression (5) as in the classical case.
The MPF (13) is now manifestly a continuous function

of E and, remarkably, its thermodynamic limit V →∞ is
the same as the thermodynamic limit of the “pure” quan-
tum expression (6) (because of (7)). Since the only strict
requirement for a well defined MPF is that it reproduce
the correct thermodynamic limit, for a quantum gas one
can choose a definition like (8) instead of Ω = trδ(E− Ĥ ′)

in (6). We emphasize again that in the passage from (6)
to (8) the hamiltonian embodying an external confining
potential is replaced by the internal hamiltonian while,
at the same time, the localized eigenstates of the former
hamiltonian are used to calculate the trace.

3 The microcanonical partition function
of a relativistic system

In special relativity, the microcanonical ensemble must in-
clude momentum conservation beside energy conservation
to fulfill Lorentz invariance. This means that the MPF
definition (8) should be generalized to [5]

Ω =
∑

hV

〈hV | δ
4(P − P̂ ) |hV 〉 , (14)

P being the four-momentum of the system and P̂ the
four-momentum operator. The MPF, now being a number
of states per four-momentum cell, is a Lorentz-invariant
quantity. The calculation of the MPF is easiest in the
rest-frame of the system, where P = (M,0) and the four-
volume V u, u being the four-velocity and V the proper
volume of the system, reduces to (V,0), according to the
usual formulation of statistical relativistic thermodynam-
ics [12, 13].
Equation (14) can be further generalized by enforcing

the conservation of not only energy-momentum but of the
maximal set of conserved quantities, i.e. a maximal set of
commuting observables built with the generators of the
Poincaré group. To achieve this, one has to replace δ4(P −
P̂ ) in (14) with a generic projector Pi over an irreducible
state of the representation of the Poincaré group [5, 6], i.e:

Ω =
∑

hV

〈hV |Pi |hV 〉 . (15)

This ensemble is still generally defined as a microcanonical
ensemble and (15) as a microcanonical partition function.
In this work, we will confine ourselves to a microcanoni-

cal ensemble where only energy-momentum is fixed, i.e. our
projectorPi in (15) will be

Pi = δ
4(P − P̂ ) (16)

and to an ideal quantum gas, i.e. with P̂ being the free
four-momentum operator. In fact, it should be stressed
that δ4(P − P̂ ) is not a proper projector, because P2 =
aP, where a is a divergent constant. This is owing to the
fact that normalized projectors onto irreducible represen-
tations cannot be defined for non-compact groups, such
as the space-time translation group T(4). Nevertheless, we
will maintain this naming even for non-idempotent opera-
tors, relaxing mathematical rigor, because it will be favor-
able to adopt the projection formalism.
It is worth pointing out that the definition (8), involv-

ing only the internal (free) hamiltonian, is much better fit
than (6) for a relativistic generalization. Besides the advan-
tage of restoring continuity in E, discussed in the previous
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section, this formulation can easily be extended to the full
set of conservation laws without major conceptual difficul-
ties. Conversely, had one tried to generalize (6), one should
have defined a finite region and afterwards sought the ob-
servables commuting with the hamiltonian supplemented
with an external confining potential. This would have not
been an easy task, and, moreover, a maximal set of ob-
servables commuting with the modified Ĥ would not, in
general, define a Poincaré algebra. This is a well known
problem in the static bag model, where the translational
invariance is manifestly broken and momentum is thus not
conserved. On the other hand, in the definition (15), we
deal with the original Poincaré algebra of unmodified (free)
operators and enforce the localization through the projec-
tor onto confined states.
Equation (15) can be recast as a full trace by inserting

a complete set of states |f〉 into (15):

Ω =
∑

hV

〈hV |
∑

f

|f〉 〈f |Pi |hV 〉

=
∑

f

〈f |Pi
∑

hV

|hV 〉 〈hV |f〉 ≡
∑

f

〈f |PiPV |f〉

= tr [PiPV ] , (17)

where

PV =
∑

hV

|hV 〉 〈hV | , (18)

is, by definition, the projector onto the Hilbert subspace
HV of confined states (i.e. of wavefunctions vanishing out-
side V ). Formula (17) is the starting point for carrying out
a calculation of theMPF at finite volume. The first thing to
do is to expand (17) as a sum of partition functions at fixed
multiplicities,

Ω =
∑

N

ΩN (19)

for a single species gas, and

Ω =
∑

{Nj}

Ω{Nj} (20)

for a multi-species gas, where {Nj}= (N1, . . . , NK) is a set
of particle multiplicities for each species j = 1, . . . ,K,
defining a channel . ΩN or Ω{Nj} are obtained by summing
over all possible values of kinematical variables with fixed
multiplicities. So, if |f〉 ≡ |N, {p}〉, where {p} labels the set
of kinematical variables of particles in the state |f〉, ΩN
reads

ΩN =
∑

{p}

〈N, {p}|PiPV |N, {p}〉 . (21)

Likewise, for a multi-species gas, the microcanonical parti-
tion function is expressed as an expansion over all possible
channels:

Ω{Nj} =
∑

{p}

〈{Nj}, {p}|PiPV |{Nj}, {p}〉 (22)

andΩ{Nj} is defined as themicrocanonical channel weight .
The microcanonical channel weights (22) have been cal-

culated in [5] with energy-momentum conservation (i.e.
using (16) in a multi-particle, first-quantization frame-
work. For a single species ideal spinless gas:

ΩN =
1

N !

∫
d3p1 . . . d

3pNδ
4

(
P −

N∑

n=1

pn

)

×
∑

ρ∈SN

N∏

n=1

FV (pρ(n)−pn) , (23)

while for a multi-species gas ofK spinless bosons:

Ω{Nj} =

⎡

⎣
K∏

j=1

1

Nj !

Nj∏

nj=1

∫
d3pnj

⎤

⎦ δ4
(
P −

N∑

n=1

pn

)

×
k∏

j=1

∑

ρj∈SNj

Nj∏

nj=1

FV (pρj(nj)−pnj) , (24)

where N =
∑
j Nj . In (23) and (24) ρj labels the permuta-

tion belonging to the permutation group SNj , and the FV
are Fourier integrals over the region V :

FV (p−p
′)≡

1

(2π)3

∫

V

d3xei(p−p
′)·x . (25)

If the volume is large enough so as to allow for the approx-
imation

FV (p−p
′) =

1

(2π)3

∫

V

d3xei(p−p
′)·x � δ3(p−p′) , (26)

the microcanonical channel weights (24) can be resummed
explicitly into the microcanonical partition function ac-
cording to (20), and one obtains [5]

Ω =
limε→0
(2π)4

∫ +∞−iε

−∞−iε
dy0

∫
d3yeiP ·y

× exp

⎡

⎣
∑

j

V

(2π)3

∫
d3p log(1− e−ip·y)−1

⎤

⎦ .

(27)

A full analytical calculation of (27) is possible only for
the limiting case of vanishing masses (e.g. microcanonical
black body). For the massive case, four-dimensional inte-
grations cannot be worked out analytically, and one has to
resort to numerical computation.
Equation (27) was implicitly obtained in [4], where the

first expression of the microcanonical partition function of
a multi-species ideal relativistic quantum gas was derived
as an expansion (20) over channels, by using the large-
volume approximation (7) from the very beginning. This
shows that the approximation (26) is indeed equivalent
to (7), as also demonstrated in [5]. Noticeably, the MPF
definition (14) without any large-volume approximation
involves the appearance of Fourier integrals accounting for
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Bose–Einstein and Fermi–Dirac correlations in the quan-
tum gas, which do not show up in the large-volume approx-
imation enforced in [4]. This approach also allows one to
investigate further generalizations when the volume is so
small that relativistic quantum field effects must be taken
into account.

4 Microcanonical ensemble and field theory

The calculation of the partition function (14) in a quan-
tum field framework brings in new difficulties with respect
to the first-quantization scheme. This problem has been
approached in the literature with a functional approach,
inspired on the usual grand-canonical thermal field the-
ory [8–10]. However, these calculations aim at the limit of
large volumes and are therefore insensitive to the difficul-
ties pertaining to the strict requirement of a finite volume,
discussed in detail in Sect. 2. As a result, for a free field, the
derived expressions are equivalent to (27).
Instead of starting with a functional integration from

the very beginning, we calculate the microcanonical par-
tition function of a free field by first expanding it at fixed
multiplicities like in (19) and (21) (or channels, for a multi-
species gas like in (20)), where the |N, {p}〉 are Fock space
states with a definite particle multiplicity and kinematical
variables {p}. To carry out this calculation, we first need to
find an expression of the microcanonical state weight :

ω ≡ 〈N, {p}|PiPV |N, {p}〉 . (28)

By using (16) and choosing |N, {p}〉 as an eigenstate of the
four-momentum operator with eigenvalue Pf =

∑
i pi, (28)

becomes

ω = δ4(P −Pf ) 〈N, {p}|PV |N, {p}〉 . (29)

To calculate ω and, by a further integration, ΩN , we need
to know the projector PV . Since PV is defined as the pro-
jector onto the Hilbert subspace of localized states, it can
easily be written down in a multi-particle non-relativistic
quantum mechanical (NRQM) framework. As an example,
for a non-relativistic spinless single particle, it reads (see
also Sect. 2)

PV =
∑

kV

|kV 〉 〈kV | , (30)

where |kV 〉 is a normalized state of the particle confined
in a region V , with a corresponding wavefunction ψkV (x)
vanishing outside V . The symbol kV stands for a set of
three numbers labeling the kinematical modes of the con-
fined states (e.g. discrete wave vectors, or energy and an-
gular momenta), and the set |kV 〉 form a complete set of
states for the wavefunctions vanishing outside V . The pro-
jector (30) can easily be extended to the many-body case,
and we have

PV =
∑

˜N,{k}

∣∣∣Ñ , {kV }
〉〈
Ñ , {kV }

∣∣∣ , (31)

where the symbol {kV } denotes a multiple set of kinemati-

cal modes of the confined states, while Ñ is the integrated
occupation number, i.e. the sum of occupation numbers
over all single-particle kinematical modes. In the NRQM
approach these numbers are simply particles multiplicities,
implying

〈
N, {p}

∣∣∣Ñ , {kV }
〉
�= 0 iff N = Ñ . (32)

To calculate the microcanonical state weight, and thence

the MPF, the products
〈
Ñ , {kV }

∣∣∣N, {p}
〉
can be worked

out on the basis of (32) similarly to what has been done in
Sect. 2 for a single particle, yielding for a scalar boson [5]

〈N, {p}|PV |N, {p}〉=
∑

ρ∈SN

N∏

n=1

FV (pρ(n)−pn) , (33)

where ρ is a permutation of the integers 1, . . . , N , and the
FV are the Fourier integrals (25) over the system region
V . From the above equation the expression of the micro-
canonical channel weight in (23) follows. We will refer to
the expression (33) as the NRQM one, meaning that it has
been obtained in this first-quantized multi-particle NRQM
framework, where, for instance, particles and antiparticles
are simply considered as different species and their contri-
butions factorize.
One could envisage that a projector like (31), written

in terms of Fock space states, could simply be carried over
to the relativistic quantum field case, where |Ñ , {kV }〉 are
states of the localized problem, obtained by solving the
free field equations in a box with suitable boundary condi-
tions. Yet, some difficulties soon arise. First of all, whilst in
NRQM the single-particle localized wavefunction |kV 〉 and
the free plane wave state |p〉 live in the same Hilbert space,
in quantum field theory the localized and the non-localized
problem are associated with distinct Hilbert spaces. Thus,
unlike in NRQM, it is not clear how to calculate a product

like
〈
Ñ , {kV }

∣∣∣N, {p}
〉
. Secondly, even if there was a def-

inite prescription for it, it should be expected that the
integrated occupation numbers of the localized problem do
not coincide with the actual particle multiplicities unless the
volume is infinite. To understand this point, one should
keep in mind that particles, when these are properly so
called, arise from solutions of the free field equations over
the whole space and that the hamiltonian eigenstates of
the localized problem are conceptually different. Conse-
quently, the integrated particle number operators in the
whole space should differ from integrated number oper-
ators within the finite region. Hence, unlike in NRQM,
a state with definite integrated occupation numbers Ñ
(we purposely refrain from calling them particle numbers)
should be expected to have non-vanishing components on
all free states with different numbers of actual particles,
namely

∣∣∣Ñ
〉
V = α0, ˜N |0〉+α1, ˜N |1〉+ . . .+α ˜N, ˜N

∣∣∣Ñ
〉
+ . . . ,

(34)
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where α
i, ˜N
are non-trivial complex coefficients, and (32)

no longer holds. Only in the large-volume limit one expects
that the integrated occupation numbers coincide with the
actual multiplicities and (32) applies. This kind of effect is
pointed out in the introduction of Landau’s book on quan-
tum field theory [7]: when trying to localize an electron,
an electron–positron pair unavoidably appears, meaning
that the localized single “particle” is indeed a superpo-
sition of many true, asymptotic particle states. Another
relevant manifestation of this difference which is probably
more familiar, is the Casimir effect, which is related to the
difference between the true vacuum state |0〉 and the local-
ized vacuum state |0〉V . Hence, all formulae derived under
the approximation (32) are asymptotic ones, valid in the
limit V →∞ but not at strictly finite volume. Thus, one
should expect significant finite-volume corrections to (33)
and the ensuing MPF (23) in a quantum field treatment.

If we want to give an expression like
〈
Ñ , {kV }

∣∣∣N, {p}
〉

a precise meaning in a quantum field framework, we first
need to map the Hilbert space HV of the localized prob-
lem into the Hilbert spaceH of the free field over the whole
space. This can be done by mapping the field eigenstates
and operators ofH intoHV in a natural way as follows:

Ψ(x)HV −→ Ψ(x)H
|ψ(x)〉HV −→ |ψ(x)〉H . (35)

This allows one to write linear, non-bijective, Bogoliubov
relations, expressing the annihilation and creation opera-
tors of the finite region problem as a function of those of the
whole (real scalar) field (see Appendix A for a derivation):

ak =

∫
d3pF (k,p)

εk+ εp
2
√
εkεp

ap+F (k,−p)
εk− εp
2
√
εkεp

a†p ,

(36)

where k are triplets of numbers labeling kinematical
modes, just like the aforementioned kV , εk is the associated
energy, εp =

√
p2+m2, and

F (k,p) =
1

(2π)3

∫

V

d3xu∗k(x)e
ip·x , (37)

uk being a complete set of orthonormal wavefunctions for
the finite region. A remarkable feature of relativistic quan-
tum fields is that, unlike in NRQM, the localized annihi-
lation operators have non-vanishing components onto the
creation operators in the whole space, as shown by (36).
This confirms our expectation that a localized state with
definite integrated occupation numbers is a non-trivial lin-
ear combination of states with different particle multiplic-
ities. As expected, as the volume increases, these compo-
nents become smaller and in the infinite volume limit one
recovers ak = ap (see Appendix A).
Starting from the Bogoliubov relations (36), it should

be possible, in principle, to calculate the coefficients
in (34), and hence the microcanonical state weight (29) by
using the expansion (31). In fact, we do not really need to
do that. It is more advantageous, as pointed out in [6], to
write the projector PV in terms of field states rather than

occupation numbers of field modes within the finite region.
Indeed, in the general definition in (17),

PV =
∑

hV

|hV 〉 〈hV | , (38)

the states |hV 〉 are a complete set of states of the Hilbert
space of the localized problem HV , where the degrees of
freedom are values of the field in each point of the region V ,
i.e. {ψ(x)}|x ∈ V . Therefore, the above projector is a reso-
lution of the identity of the localized problem and can be
written (for a real scalar field)

PV =

∫

V

Dψ |ψ〉 〈ψ| , (39)

where |ψ〉 ≡ ⊗x|ψ(x)〉 and Dψ is the functional measure;
the index V means that the functional integration must
be performed over the field degrees of freedom in the re-
gion V ; that is, Dψ =

∏
x∈V dψ(x). The normalization of

the states is chosen so as to have 〈ψ(x)|ψ′(x)〉 = δ(ψ(x)−
ψ′(x)) to ensure the idempotency of PV . If we now want to
give a clear meaning to expressions like

〈{Nj}, {p}|PV |{Nj}, {p}〉 , (40)

we should find a way of completing the tensor product in
the projector (39) with the field states outside the region
V in such a way that the scalar product can be performed
unambiguously.
Unfortunately the answer to this question is not unique,

and the projector can be extended to H in infinitely many
ways. What is important is that the result of the calcu-
lation is independent of how the projector has been ex-
tended. Thus, at the end of the calculation, one has to
check whether spurious terms appear, possibly divergent,
depending explicitly on the chosen state of the field out-
side V , and these terms must be subtracted. In general,
all terms depending on the degrees of freedom of the field
outside V must be dropped from the final result.
In this work, we will extend the projector with eigen-

states of the field, where the field function ψ(x) is some
arbitrary function outside the region V . Thus, the projec-
tor PV (39) is mapped to

PV =

∫

V

Dψ |ψ〉 〈ψ| |ψ〉 ≡ ⊗x∈V |ψ(x)〉⊗x/∈V |ψ(x)〉 ,

(41)

where the index V still impliesDψ =
∏
x∈V dψ(x). We will

see that, with the definition (41), spurious terms depend-
ing on the degrees of freedom outside V do arise indeed, but
that they can be subtracted “by hand” in a consistent way.

5 Single particle channel

We will start calculating the expectation value 〈p|PV |p〉
of a single-particle channel in the simple cases of neutral
and charged scalar fields. This is preparatory to the general
case of multiparticle states in Sect. 6.
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5.1 Neutral scalar field

We consider a gas made of one type of spinless bosons de-
scribed by the free real scalar field3 (in the Schrödinger
representation):

Ψ(x) =
1

(2π)
3
2

∫
d3p
√
2ε

(
a(p)eip·x+a†(p)e−ip·x

)
, (42)

where ε≡
√
p2+m2 is the energy, p is the modulus of the

three-momentum, and the normalization has been chosen
so as to have the following commutation rule between an-
nihilation and creation operators:

[a(p), a†(p′)] = δ3(p−p′) . (43)

We start writing the one-particle Fock state |p〉 in terms of
creation and annihilation operators acting on the vacuum:

〈p|PV |p〉= 〈0|a(p)PV a
†(p) |0〉 . (44)

Since PV is defined, according to (41), as a functional inte-
gral of eigenvectors of the field operator Ψ , it is convenient
to express creation and annihilation operators in terms of
the field operators. We shall use the following expressions,
which are the most appropriate for our task:

〈0| a(p) = 〈0|
1

(2π)
3
2

∫
d3xe−ip·x

√
2εΨ(x)

a†(p) |0〉=
1

(2π)
3
2

∫
d3xeip·x

√
2εΨ(x) |0〉 . (45)

These expressions can easily be checked by plugging, on the
right hand side, the field operators in (42). By using (45) in
(44) we have

〈0|a(p)PV a
†(p) |0〉=

1

(2π)3

∫
d3x

∫
d3x′ eip·(x−x

′)

×2ε 〈0|Ψ(x′)PV Ψ(x) |0〉 . (46)

It can easily be checked now that the rightmost factor in
the above equation turns out to be (by using the definition
(41)):

〈0|Ψ(x′)PV Ψ(x) |0〉=

∫

V

Dψ| 〈ψ|0〉 |2ψ(x′)ψ(x) , (47)

where ψ(x) and ψ(x′) are field functions or the eigenvalues
of the field operator relevant to the state |ψ〉; that is,

Ψ(x) |ψ〉= |ψ〉ψ(x) . (48)

It is possible to find a solution of the functional integral
(47) by first considering the infinite volume limit, when the
projector PV reduces to the identity. In this limiting case,
the functional integral in (41) is now performed over all
possible field functions, and (41) becomes a resolution of

3 Henceforth, the capital letter Ψ will denote field operators,
while for field functions we will use the small letter ψ.

the identity; 〈0|Ψ(x′)Ψ(x)|0〉 is just the two-point correla-
tion function that we write, according to (47), as

〈0|Ψ(x′)Ψ(x) |0〉=

∫
Dψ| 〈ψ|0〉 |2ψ(x′)ψ(x) . (49)

The product 〈ψ|0〉 is known as the vacuum functional and
reads [14] for a scalar neutral field

〈ψ|0〉=N exp

{
−
1

4

∫
d3x1

∫
d3x2ψ(x1)K(x1−x2)ψ(x2)

}
,

(50)

where N is a field-independent normalization factor that
is irrelevant for our purposes. The function K(x′−x) is
called the kernel and fulfills the equation [14]

∫
d3x′ e−ip·x

′
K(x′−x) = 2εe−ip·x , (51)

whose solution is

K(x′−x) =
1

(2π)3

∫
d3pe−ip·(x

′−x)2ε . (52)

The functional integral (49) is therefore a gaussian integral
and can be solved by using the known formulae for multiple
gaussian integrals of real variables [14]:

I2N =

∫
Dψ

2N∏

i=1

ψ(ξi)

× exp

[
−
1

2

∫
d3x1

∫
d3x2ψ(x1)K(x1−x2)ψ(x2)

]

(53)

= I0
∑

pairings
of ξ1,... ,ξ2N

∏

pairs

K−1(paired variables) ,

where paired variables mean couples (ξi, ξj) whose differ-
ence ξi−ξj (or, what is the same, ξj−ξi, as K

−1 is sym-
metric) is the argument of K−1. The factor I0 is just the
normalization of the vacuum state I0 = 〈0|0〉, which is set
to 1. The inverse kernel K−1 can be found from its defin-
ition:
∫
d3x′K(y−x′)K−1(x′−x) = δ3(x−y) ∀x,y , (54)

leading to

K−1(x′−x) =
1

(2π)3

∫
d3p

2ε
e−ip·(x

′−x)

= 〈0|Ψ(x′)Ψ(x) |0〉 . (55)

The last equality comes from (53) and (49) in the special
case N = 2 or can be proved directly from the Fourier ex-
pansion (42) of the field.
We are now in a position to solve the functional inte-

gral (47) at finite volume. First, the functional integration
variables are separated from those that are not integrated,
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i.e. the field values outside V (V̄ denotes the complement
of V ):

| 〈ψ|0〉 |2

= |N |2 exp

[
−
1

2

∫
d3x1

∫
d3x2ψ(x1)K(x1−x2)ψ(x2)

]

= |N |2 exp

[
−
1

2

∫

V

d3x1

∫

V

d3x2ψ(x1)K(x1−x2)ψ(x2)

]

× exp

[
−
1

2

∫

V̄

d3x1

∫

V̄

d3x2ψ(x1)K(x1−x2)ψ(x2)

]

× exp

[
−

∫

V

d3x1

∫

V̄

d3x2ψ(x1)K(x1−x2)ψ(x2)

]
,

(56)

where we have taken advantage of the symmetry of the ker-
nel K. Equation (56) is a gaussian functional, with a gen-
eral quadratic form in the field values in the region V ; it
can be integrated in (47) according to standard rules [14],
yielding

∫

V

Dψ| 〈0|ψ〉|2ψ(x′)ψ(x)

=K−1V (x
′,x)|N |2 det

[
KV

2π

]−1/2

× exp

[
1

2

∫

V

d3x1d
3x′1

∫

V̄

d3x2d
3x′2K

−1
V (x1,x

′
1)

×K(x1−x2)K(x
′
1−x

′
2)ψ(x

′
2)ψ(x2)

−
1

2

∫

V̄

d3x1

∫

V̄

d3x2ψ(x1)K(x1−x2)ψ(x2)

]

=K−1V (x
′,x)

∫

V

Dψ| 〈0|ψ〉|2 =K−1V (x
′,x) 〈0|PV |0〉 .

(57)

The function K−1V is the inverse of K over the region V ,
namely the inverse of

K(x′−x)ΘV (x
′)ΘV (x) ≡KV (x

′−x) , (58)

the function ΘV (x) being the Heaviside function:

ΘV (x) =

{
1 if x ∈ V,
0 otherwise.

(59)

The inverse kernel K−1V fulfills, by definition, the integral
equation,
∫

V

d3x′KV (y−x
′)K−1V (x

′,x) = δ3(x−y) ∀x,y ∈ V .

(60)

Note that, because of the finite region of integration, the
inverse kernel may now depend on both space variables in-
stead of just their difference. Also note that K−1V is real
and symmetric, KV being real and symmetric. Therefore,
the result of the functional integration yields the simple
formula

〈0|Ψ(x′)PV Ψ(x) |0〉=K
−1
V (x

′,x) 〈0|PV |0〉 , (61)

where the factor 〈0|PV |0〉 is a positive constant, which we
will leave unexpanded.
Taking it altogether, the presence of the projector PV

in (61) modifies the two-point correlation function by in-
troducing a constant factor 〈0|PV |0〉 and replacing the
inverse kernel, K−1, with a different one, K−1V . It can eas-
ily be proved, by using the general formulae of gaussian
integrals, that this holds true in the more general case of
the many-point correlation function. In fact, (53) holds for
general quadratic forms in the field ψ, and so (61) can be
generalized to

〈0|
N∏

n=1

Ψ(xn)PV

2N∏

n=N+1

Ψ(xn) |0〉

= 〈0|PV |0〉
∑

pairings
of x1,... ,x2N

∏

pairs

K−1V (paired var.) . (62)

The remaining task is to calculate the inverse kernel K−1V
by means of (60). In fact, we will look for a solution of the
more general equation,
∫

V

d3x′K(y−x′)K−1V (x
′,x) = δ3(x−y) ∀x ∈ V,y ,

(63)

with unbounded y. It is clear that a solution K−1V of equa-
tion (63) is also a solution of (60), because KV equals K
when y ∈ V . Setting y unbounded allows us to find an im-
plicit form forK−1V . In fact, (63) implies

1

(2π)3

∫

V

d3x′ eip·x
′
2εK−1V (x

′,x) =
eip·x

(2π)3
, (64)

which is obtained by multiplying both sides of (63) by
eip·y/(2π)3 and integrating over the whole space in d3y.
We are now in a position to accomplish our task of cal-

culating 〈p|PV |p〉. By plugging (61) into (46), we get

〈0|a(p)PV a
†(p) |0〉=

1

(2π)3

∫
d3x

∫
d3x′ eip·(x−x

′)

×2εK−1V (x
′,x) 〈0|PV |0〉 . (65)

The integration domain in (65) can be split into the region
V and the complementary V̄ for both variables. The in-
verse kernel K−1V is not defined outside V and can thus be
set to an arbitrary value, e.g. zero. Otherwise, even if one
chose a non-vanishing continuation of K−1V , an integration
outside the domain V would involve the degrees of freedom
of the field outside V , and, according to the general discus-
sion at the end of Sect. 4, the contributing term should be
dropped. Therefore, retaining only the physically meaning-
ful term, (65) turns into

〈0|a(p)PV a
†(p) |0〉=

1

(2π)3

∫

V

d3x

∫

V

d3x′ eip·(x−x
′)

×2εK−1V (x
′,x) 〈0|PV |0〉 . (66)

In the above equation one can easily recognize the complex
conjugate of the left hand side of (64). Hence, replacing
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it with the complex conjugate of the right hand side, one
gets

〈0|a(p)PV a
†(p) |0〉=

1

(2π)3

∫

V

d3x 〈0|PV |0〉

=
V

(2π)3
〈0|PV |0〉 , (67)

which is the same as the result of NRQM in (33) in the sim-
ple caseN =1 times a factor 〈0|PV |0〉. This factor still con-
tains dependence on the field degrees of freedom outside V ,
according to the projector expression in (41), which should
disappear at some point. However, we will see that this
factor appears at any multiplicity and therefore becomes
irrelevant for the calculations of the statistical averages.

5.2 Charged scalar field

The calculation done for a neutral scalar field can easily
be extended to a charged scalar field. The 2-component
charged scalar field in Schrödinger representation reads

Ψ(x) =
1

(2π)
3
2

∫
d3p
√
2ε

(
a(p)eip·x+ b†(p)e−ip·x

)
(68)

Ψ†(x) =
1

(2π)
3
2

∫
d3p
√
2ε

(
b(p)eip·x+a†(p)e−ip·x

)
,

where a, a† and b, b† are annihilation and creation opera-
tors of particles and antiparticles, respectively. They sat-
isfy the commutation relations

[a(p), a†(p′)] = [b(p), b†(p′)] = δ3(p−p′) (69)

[a(p), b(p′)] = [a†(p), b(p′)] = 0 .

Likewise, the fields obey the commutation relations

[Ψ(x), Ψ†(y)] = 0 , (70)

and it is then possible to construct field states |ψ,ψ†〉. The
projectorPV can be written as

PV ≡

∫

V

D(ψ†, ψ)
∣∣ψ,ψ†

〉 〈
ψ,ψ†

∣∣ , (71)

with suitable state normalization and arbitrary field func-
tions ψ(x) outside the region V .4 Similar to (45), one can
write

〈0|a(p) = 〈0|
1

(2π)
3
2

∫
d3xe−ip·x

√
2εΨ(x) (72)

a†(p) |0〉=
1

(2π)
3
2

∫
d3xeip·x

√
2εΨ†(x) |0〉

〈0| b(p) = 〈0|
1

(2π)
3
2

∫
d3xe−ip·x

√
2εΨ†(x)

4 The functional measure in (71) reads∏
x dψ(x)dψ

∗(x)/iπ. Anyhow, its explicit form is not import-
ant for our purposes.

b†(p) |0〉=
1

(2π)
3
2

∫
d3xeip·x

√
2εΨ(x) |0〉 .

The chain of arguments of the previous subsection can be
repeated, and the functional integral

〈0|
N∏

n=1

Ψ(xn)PV

N∏

n=1

Ψ†(x′n) |0〉

=

∫

V

D(ψ†, ψ)| 〈0|ψ,ψ†〉|2
N∏

n=1

ψ(xn)ψ
†(x′n) (73)

is found to be a multiple Gaussian integral. Letting ρ be
a permutation of the integers 1, . . . , N , the integration on
the right hand side of (73) yields

〈0|
N∏

n=1

Ψ(xn)PV

N∏

n=1

Ψ†(x′n) |0〉

= 〈0|PV |0〉
∑

ρ∈SN

N∏

n=1

K−1V (xn,x
′
ρ(n)) , (74)

which differs from the corresponding expression for the real
scalar field, because now the field is complex, and ψ can
only be coupled to ψ† [15]:

∫
D(ψ†, ψ)

N∏

n=1

(
ψ(ξn)ψ

†(ξ′n)
)

× exp

[
−

∫
d3x1

∫
d3x2ψ

†(x1)K(x1−x2)ψ(x2)

]

= I0
∑

ρ∈SN

N∏

n=1

K−1(ξn−ξ
′
ρ(n)) . (75)

However, the functional integral involving only the two
fields ψ and ψ† yields the same result as for neutral par-
ticles. Thus, the kernel K is still the same and so is the
integral equation (64) definingK−1V . The expectation value
ofPV in a state with only one particle (or antiparticle) will
also be the same as in (67); that is,

〈0| a(p)PV a
†(p) |0〉= 〈0| b(p)PV b

†(p) |0〉

=
V

(2π)3
〈0|PV |0〉 . (76)

6 Multiparticle channels

We have seen in the previous section that the expectation
value 〈p|PV |p〉 for a single spinless particle is the same as
obtained in a NRQM approach [5] times an overall imma-
terial factor 〈0|PV |0〉. In this section, we will tackle the
calculation of the general multiparticle state. We will see
that, by using the projector definitions in (41) and (71)
and subtracting the spurious contributions stemming from
external field degrees of freedom, the final result is still
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the same as in the NRQM calculation times the factor
〈0|PV |0〉.
We will first address the case of N charged particles.

6.1 Identical charged particles

We will consider a state withN identical charged particles;
for N antiparticles the result is trivially the same.
We want to calculate

〈N, {p}|PV |N, {p}〉= 〈0|
N∏

n

a(pn)PV

N∏

n

a†(pn) |0〉 .

(77)

Since

[a†, Ψ†] = [a, Ψ ] = [b, Ψ†] = [b†, Ψ ] = 0 , (78)

one can replace creation and annihilation operators with
their expressions in (72) disregarding the position of the
operators with respect to the vacuum state. Expressed in a
formula we have

〈N, {p}|PV |N, {p}〉

=
N∏

n=1

[
1

(2π)3

∫
d3xn

∫
d3x′n e

−ipn·(xn−x
′
n)2εn

]

×〈0|
N∏

n=1

Ψ(xn)PV

N∏

n=1

Ψ†(x′n) |0〉 (79)

=
N∏

n=1

[
1

(2π)3

∫
d3xn

∫
d3x′n e

−ipn·(xn−x
′
n)2εn

]

×
∑

ρ∈SN

N∏

n=1

K−1V (xn,x
′
ρ(n)) 〈0|PV |0〉 , (80)

where SN is the permutation group of rank N . Now, like
for the single-particle case, we restrict the integration do-
main to V in (79) in order to get rid of external degrees of
freedom and, by repeatedly using (64), we are left with

〈N, {p}|PV |N, {p}〉

〈0|PV |0〉

=
∑

ρ∈SN

N∏

n=1

[
1

(2π)3

∫

V

d3x′n e
−ipn·(x

′
ρ(n)−x

′
n)

]

=
∑

ρ∈SN

N∏

n=1

[
1

(2π)3

∫

V

d3x′n e
−i(p

ρ−1(n)−pn)·x
′
n

]
.

(81)

Hence, using the definition (25), we have

〈N, {p}|PV |N, {p}〉=
∑

ρ∈SN

N∏

n=1

FV (pρ(n)−pn) 〈0|PV |0〉 ,

(82)

which is exactly the expression (33) obtained in NRQM for
N identical bosons times the factor 〈0|PV |0〉.

6.2 Identical neutral particles

The case of N identical neutral particles is more compli-
cated, because of the possibility of particle pair creation.
This is reflected in the formalism in the occurrence of many
additional terms in working out (77). We start with the
calculation for a state with two neutral particles of four-
momenta p1 and p2, respectively, generalizing to N par-
ticles thereafter. In terms of creation and annihilation op-
erators we have

〈p1, p2|PV |p1, p2〉= 〈0|a(p1)a(p2)PV a
†(p2)a

†(p1) |0〉 ,
(83)

which we can rewrite using (45) for a(p1) and a
†(p1) as

〈p1, p2|PV |p1, p2〉

=
1

(2π)3

∫
d3x1

∫
d3x′1 e

−ip1·(x1−x1
′)

×2ε1 〈0|Ψ(x1)a(p2)PV a
†(p2)Ψ(x

′
1) |0〉 . (84)

In order to use the expression (45) for the annihilation and
creation operators a(p2) and a

†(p2), we have to get them
acting on the vacuum state; hence they should be moved
from their position in (84) outwards. This can be done by
taking advantage of the following commutation rules:

[Ψ(x), a(p)] =−
e−ip·x

(2π)
3
2
√
2ε

[a(p)†, Ψ(x)] =−
eip·x

(2π)
3
2
√
2ε
. (85)

Using (85) and then plugging (45) in (84) we get

〈p1, p2|PV |p1, p2〉

=
ε1

ε2(2π)6

∫
d3x1

∫
d3x′1 e

−ip1·(x1−x1
′) e−ip2·(x1−x

′
1)

×〈0|PV |0〉

−
2ε1
(2π)6

∫
d3x1

∫
d3x′1

∫
d3x2 e

−ip1·(x1−x1
′)

× e−ip2·(x2−x
′
1) 〈0|Ψ(x2)PV Ψ(x1) |0〉

−
2ε1
(2π)6

∫
d3x1

∫
d3x′1

∫
d3x′2 e

−ip1·(x1−x1
′)

× e−ip2·(x1−x
′
2) 〈0|Ψ(x′1)PV Ψ(x

′
2) |0〉

+
4ε1ε2
(2π)6

∫
d3x1

∫
d3x′1

∫
d3x2

∫
d3x′2 e

−ip1·(x1−x1
′)

× e−ip2·(x2−x2
′) 〈0|Ψ(x2)Ψ(x1)PV Ψ(x

′
1)Ψ(x

′
2) |0〉 ,

(86)

where advantage has been taken of the fact that [PV , Ψ(x)]
= 0. Equation (86) has four different terms, among which
only the last one was present in the case of two charged
particles in Sect. 6.1. Instead, the first three terms arise
from contractions of the annihilation and creation opera-
tors with field operators on the same side with respect to
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PV . By using (62) and replacing all unbounded integra-
tions with integrations over V to eliminate spurious de-
grees of freedom of the field, (86) yields

〈p1, p2|PV |p1, p2〉

〈0|PV |0〉

=
ε1

ε2(2π)6

∫

V

d3x1

∫

V

d3x′1 e
−ip1·(x1−x1

′) e−ip2·(x1−x
′
1)

−
2ε1
(2π)6

∫

V

d3x1

∫

V

d3x2

∫

V

d3x′1 e
−ip1·(x1−x1

′)

× e−ip2·(x2−x
′
1)K−1V (x2,x1)

−
2ε1
(2π)6

∫

V

d3x1

∫

V

d3x′1

∫

V

d3x′2 e
−ip1·(x1−x1

′)

× e−ip2·(x1−x
′
2)K−1V (x

′
1,x

′
2)

+
4ε1ε2
(2π)6

∫

V

d3x1

∫

V

d3x′1

∫

V

d3x2

×

∫

V

d3x′2 e
−ip1·(x1−x1

′) e−ip2·(x2−x2
′)

×
[
K−1V (x1,x

′
1)K

−1
V (x2,x

′
2)+K

−1
V (x1,x

′
2)K

−1
V (x2,x

′
1)

+K−1V (x1,x2)K
−1
V (x

′
2,x

′
1)
]
. (87)

We can now use (64) to integrate out the inverse kernel
in (87). For the second term on the right hand side, we
choose to integrate exp(−ip2 ·x2)K

−1
V (x2,x1) in x2 and

for the third term exp(ip1 ·x′1)K
−1
V (x

′
1,x

′
2) in x

′
1. At the

same time, we perform the integration of the last term in an
arbitrary couple of variables with indices 1 and 2, obtaining

〈p1, p2|PV |p1, p2〉

〈0|PV |0〉

=
1

(2π)6

∫

V

d3x1

∫

V

d3x′1 e
−ip1·(x1−x1

′) e−ip2·(x1−x
′
1)
ε1

ε2

−
1

(2π)6

∫

V

d3x1

∫

V

d3x′1 e
−ip1·(x1−x1

′)2ε1
e−ip2·(x1−x

′
1)

2ε2

−
1

(2π)6

∫

V

d3x1

∫

V

d3x′2 e
−ip1·(x1−x2

′) e−ip2·(x1−x
′
2)

+
V 2

(2π)6
+
1

(2π)6

∫

V

d3x1

∫

V

d3x2 e
−i(p1−p2)·(x1−x2)

+
1

(2π)6

∫

V

d3x1

∫

V

d3x′2 e
−ip1·(x1−x2

′) e−ip2·(x1−x
′
2) .

(88)

Four terms in the above sum cancel, and we are left with

〈p1, p2|PV |p1, p2〉

〈0|PV |0〉
=
V 2

(2π)6
+ | FV (p1−p2) |

2

=
∑

ρ∈S2

2∏

n=1

FV (pρ(n)−pn) . (89)

This is the same result as one would obtain for two iden-
tical bosons in a NRQM framework [5]. The second term
on the right hand side accounts for the well known phe-
nomenon of Bose–Einstein correlation in the emission of
identical boson pairs.

Looking back at the whole derivation, we find that the
terms arising from pairings of field variables on the same
side with respect to PV have cancelled with the terms
stemming from commutation of annihilation and creation
operators with field operators; the only surviving terms are
N ! pairings of field variables on different sides of PV , just
like in the case of charged particles. This cancellation prop-
erty holds, and so the formula (82) applies to the case of N
neutral particles as well. A proof based on the form of the
thermodynamic limit V →∞ is given in Appendix B.

6.3 Particle–antiparticle case

For a state with one particle and one antiparticle, the ex-
pectation value of PV reads

〈0|a(p1)b(p2)PV b
†(p2)a

†(p1) |0〉 (90)

implying, in view of (72),

〈0|a(p1)b(p2)PV b
†(p2)a

†(p1) |0〉

=
1

(2π)3

∫
d3x1

∫
d3x′1 e

−ip1·(x1−x1
′)

×2ε1 〈0|Ψ(x1)b(p2)PV b
†(p2)Ψ

†(x′1) |0〉 . (91)

Like for neutral particles, the b and b† operators are moved
outwards to get them acting on the vacuum state by using
the commutators:

[Ψ(x), b(p)] =
e−ip·x

(2π)
3
2
√
2ε

[b(p)†, Ψ†(x)] =
eip·x

(2π)
3
2
√
2ε
. (92)

By using (72) and, like in the previous subsection, restrict-
ing the integration to the region V to eliminate external
degrees of freedom, we obtain

〈0|a(p1)b(p2)PV b
†(p2)a

†(p1) |0〉

=
ε1

ε2(2π)6

∫

V

d3x1

∫

V

d3x′1 e
−ip1·(x1−x1

′) e−ip2·(x1−x
′
1)

×〈0|PV |0〉

−
2ε1
(2π)6

∫

V

d3x1

∫

V

d3x′1

∫

V

d3x2 e
−ip1·(x1−x1

′)

× e−ip2·(x2−x
′
1) 〈0|Ψ†(x2)PV Ψ(x1) |0〉

−
2ε1
(2π)6

∫

V

d3x1

∫

V

d3x′1

∫

V

d3x′2 e
−ip1·(x1−x1

′)

× e−ip2·(x1−x
′
2) 〈0|Ψ†(x′1)PV Ψ(x

′
2) |0〉

+
4ε1ε2
(2π)6

∫

V

d3x1

∫

V

d3x′1

∫

V

d3x2

×

∫

V

d3x′2 e
−ip1·(x1−x1

′) e−ip2·(x2−x2
′)

×〈0|Ψ†(x2)Ψ(x1)PV Ψ
†(x′1)Ψ(x

′
2) |0〉 , (93)
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whose result is (87) except the last term but one, because
now

〈0|Ψ†(x2)Ψ(x1)PV Ψ†(x′1)Ψ(x
′
2)|0〉

〈0|PV |0〉
(94)

=K−1V (x1,x
′
1)K

−1
V (x2,x

′
2)+K

−1
V (x1,x2)K

−1
V (x

′
2,x

′
1) ,

which is a consequence of the general expression (74).
Again, four out of five terms cancel in (93), and we get

〈0|a(p1)b(p2)PV b†(p2)a†(p1)|0〉

〈0|PV |0〉
=
V 2

(2π)6
, (95)

where the missing term with respect to the neutral par-
ticle case (89) is the one involving permutations; this is
a natural result, because particles and antiparticles are, of
course, not identical. Hence, the expectation value of PV
on a particle–antiparticle pair shows a remarkable factor-
ization property; that is,

〈0|a(p1)b(p2)PV b
†(p2)a

†(p1) |0〉

= 〈0| a(p1)PV a
†(p1) |0〉 〈0| b(p2)PV b

†(p2) |0〉 ,
(96)

where the = sign holds provided that the integrations are
restricted to the region V .
Extrapolating to the most general case of N+ particles

and N− antiparticles, it can be argued, by using the limit
V →∞, that the factorization of the microcanonical state
weight holds (see Appendix B) at any multiplicity, i.e. par-
ticles and antiparticles behave like two different species:

〈{N+}, {p+}, {N−}, {p−}|PV |{N+}, {p+}, {N−}, {p−}〉

=
∑

ρ+∈SN+

N+∏

n+=1

FV (pρ+(n+)−pn+)

×
∑

ρ−∈SN−

N−∏

n−=1

FV (pρ−(n−)−pn−) 〈0|PV |0〉 . (97)

7 Summary and discussion

On the basis of (19), (21), (16) and (82), which apply to
charged as well as neutral particles, and taking into ac-
count that the states |N, {p}〉 have been chosen to be eigen-
vectors of four-momentum, we can finally write down the
full expression of the microcanonical partition function of
a relativistic quantum gas of neutral spinless bosons:

Ω = 〈0|PV |0〉
∞∑

N=0

1

N !

[
N∏

n=1

∫
d3pn

]
δ4

(
P −

N∑

n=1

pn

)

×
∑

ρ∈SN

N∏

n=1

∫

V

d3x exp[ix · (pρ(n)−pn)] , (98)

with P = (M,0) and the factor 1/N ! has been introduced
in order to avoid multiple counting when integrating over

particle momenta. Similarly, on the basis of (20), (22) and
(97), the microcanonical partition function of a relativistic
quantum gas of charged spinless bosons can be written as

Ω = 〈0|PV |0〉
∞∑

N+,N−=0

1

N+!N−!

⎡

⎣
N++N−∏

n=1

∫
d3pn

⎤

⎦

× δ4

⎛

⎝P −
N++N−∑

n=1

pn

⎞

⎠

×
∑

ρ+∈SN+

N+∏

n+=1

∫

V

d3x exp[ix · (pρ+(n+)−pn+)]

×
∑

ρ−∈SN−

N−∏

n−=1

∫

V

d3x exp[ix · (pρ−(n−)−pn−)] .

(99)

The generalization to a multi-species gas of spinless bosons
is then easily achieved:

Ω = 〈0|PV |0〉
∑

{Nj}

⎡

⎣
K∏

j=1

1

Nj !

Nj∏

nj=1

∫
d3pnj

⎤

⎦

× δ4
(
P −

N∑

n=1

pn

)

×
k∏

j=1

∑

ρj∈SNj

Nj∏

nj=1

∫

V

d3x exp[ix · (pρj (nj)−pnj)] ,

(100)

where N =
∑
j Nj . The formulae (98), (99) and (100) are

our final results. The finite volume Fourier integrals in the
above expressions nicely account for the quantum statistics
correlations known as Bose–Einstein and Fermi–Dirac cor-
relations. We stress once more that for a charged quantum
gas, particles and antiparticles can be handled as belonging
to distinct species, and they correspond to different labels j
in the multi-species generalization of (100).
The expression of the MPF (98) is the same as obtained

in a NRQM calculation in [5], quoted in this work in (24),
times an overall factor 〈0|PV |0〉, which is immaterial for
the calculation of statistical averages in the microcanon-
ical ensemble. More specifically, the expectation value of
PV on a free multi-particle state (see (82) and (97)) is
the same as in the NRQM calculation (33) times 〈0|PV |0〉.
This result has been achieved enforcing a subtraction pre-
scription, namely that all terms depending on the degrees
of freedom outside the system region V must be subtracted
“by hand” in all terms at fixed multiplicities. The factor
〈0|PV |0〉 is still dependent on those spurious degrees of
freedom, according to the PV definition in (41), but this
does not affect any statistical average, because it always
cancels. In the thermodynamic limit, this factor tends to 1
as PV → I and the large-volume limit result known in the
literature [4] (i.e. (27)) is recovered.
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This result looks surprising in a sense, because one
would have expected a priori that quantum relativistic ef-
fects would affect the statistical averages bringing in a de-
pendence on the ratio between the Compton wavelength
and the linear size of the region, getting negligible at small
values, i.e. when V →∞. This is because the condition
(32), from which the MPF expressions (23) and (24) ensue,
no longer holds in quantum field theory at finite volume
and only applies to good approximation at very large vol-
umes, as discussed in Sect. 4. However, in the calculation
of statistical averages, only the projector PV enters, and
this implies the summation over all states at different in-
tegrated occupation numbers |Ñ〉V , according to (31). So,
even though the coefficients in the expansion (34) are dif-
ferent from zero and do depend on the volume, it turns out
that, summing all of them at fixedN , one gets the same re-
sult as in the NRQM approximation (32). Expressed in a
formula, by using (31), we have

〈N, {p}|PV |N{p}〉

=
∑

˜N,{kV }

∣∣∣
〈
N, {p}

∣∣∣Ñ, {kV }
〉∣∣∣
2

=
∑

˜N,{kV }

∣∣∣
〈
0
∣∣∣Ñ , {kV }

〉∣∣∣
2 ∑

{kV }

|〈N, {p}|N, {kV }〉|
2
NR ,

(101)

where the index NR means that one should make a non-
relativistic quantum mechanical calculation.
This calculation can be extended to the most general

case of the microcanonical ensemble of an ideal relativis-
tic quantum gas by fixing the maximal set of observables
of the Poincaré algebra, i.e. spin, third component of the
spin and parity, besides the energy-momentum four-vector.
This will be the subject of a forthcoming publication.

Acknowledgements. We are grateful to F. Colomo and L. Lu-
sanna for stimulating discussions.

Appendix A: Bogoliubov relations
for a real scalar field

The Bogoliubov relations for a real scalar field can be de-
rived by first expressing the localized annihilation operator
as a function of the field Ψ and its conjugated moment Ψ̇ .
For the localized problem we have

Ψ(x) =
∑

k

1
√
2εk
akuk(x)e

−iεkt+c.c. , (A.1)

where k is a vector of three numbers labeling the modes in
the region V , εk is the associated energy and uk is a com-
plete set of orthogonal wavefunctions over the region V :

∑

k

u∗k(x)uk(x
′) = δ3(x−x′)

∫

V

d3xu∗k(x)uk′(x) = δk,k′ (A.2)

and vanishing outside V . Inverting (A.1), we have

ak =
i

√
2εk

∫

V

d3xu∗k(x)e
iεkt

↔
∂

∂t
Ψ(x) , (A.3)

which are valid at any time. We now enforce the mapping
(35) and replace the localized field operators at t= 0, i.e.
in the Schrödinger representation, with those in the full
Hilbert space. In other words, we replace in (A.3)

Ψ(x)→
1

(2π)3/2

∫
d3p

1√
2εp
eip·xap+c.c.

Ψ̇(x)→
1

(2π)3/2

∫
d3p
−i
√
εp

√
2
eip·xap+c.c. ,

(A.4)

where εp =
√
p2+m2, obtaining

ak =

∫
d3pF (k,p)

εk+ εp
2
√
εkεp

ap+F (k,−p)
εk− εp
2
√
εkεp

a†p ,

(A.5)

where

F (k,p) =
1

(2π)3/2

∫

V

d3xu∗k(x)e
ip·x ; (A.6)

that is, the Bogoliubov relations (36). We observe that the
localized annihilation operator is a non-trivial combina-
tion of annihilation and creation operators in the whole
space. However, the term in (A.5) depending on the cre-
ation operator a†p vanishes in the thermodynamic limit, as
expected. This is most easily shown for a rectangular re-
gion, where one has uk(x) = exp[ik ·x]/

√
V ; k is given by

(9) and εk =
√
k2+m2. Hence we have

lim
V→∞

F (k,−p)∝ lim
V→∞

∫

V

d3xe−i(p+k)·x ∝ δ3(p+k) ,

(A.7)

and consequently εk− εp → 0, which makes the second
term in (A.5) vanishing.
We can use (A.5) to work out linear relations between

Fock space states of the localized problem and asymptotic
Fock space states. These can be obtained enforcing the de-
struction of the localized vacuum state:

ak |0〉 V = 0

and writing

|0〉 V = α0 |0〉+

∫
d3pα1(p) |p〉

+

∫
d3p1d

3p2α2(p1,p2) |p1,p2〉+ . . .

(A.8)

Working out such relations is beyond the scope of this
paper.
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Appendix B: Multiparticle state
with N particles

In order to prove (82) for neutral particles, the first step is
to realize that a general expansion of

〈0| a1 . . . aNPV a
†
N . . . a

†
1 |0〉 (B.1)

(ai is a shorthand for a(pi)) must yield, on the basis of
what shown for the case of two particles, a sum of terms like
these:

∫

V

d3x1 . . .

∫

V

d3xN

×
N∏

n,m=1

e±ipn·xmf(ε1, . . . , εN ) 〈0|PV |0〉 , (B.2)

where f is a generic function involving a sum of ratios or
product of any number of particle energies and ± stands
for either a + or a − sign. That (B.2) ought to be the fi-
nal expression can be envisaged on the basis of a repeated
application of (45), (85), (62) and (64) in turn. Equation
(B.2) can also be written as

∫

V

d3x1 . . .

∫

V

d3xN e
i
∑′
n pn·x1 . . . ei

∑′
n pn·xn

×f(ε1, . . . , εN ) 〈0|PV |0〉 , (B.3)

where
∑′
stands for an algebraic sum with terms having

either sign.
If we now take the thermodynamic limit V →∞ of

(B.1), one has PV → I; therefore,

lim
V→∞

〈0| a1 . . . aNPV a
†
N . . . a

†
1 |0〉

= 〈0| a1 . . . aNa
†
N . . . a

†
1 |0〉

=
∑

ρ∈SN

N∏

n=1

δ3(pn−pρ(n)) . (B.4)

This tells us that the functions f in each term (B.2) must
reduce to a trivial factor 1, because they would otherwise
survive in the thermodynamic limit, being a factor depend-
ing only on the pn. Moreover, since the thermodynamic
limit involves only Dirac δs with differences of two mo-
menta as argument, there can be only a difference of two
momenta as an argument of the exponential functions in
(B.3). Finally, by comparing (B.3) with (B.4), we conclude
that the only possible expression at finite V is

〈0|a1 . . . aNPV a
†
N . . . a

†
1 |0〉

= 〈0|PV |0〉
∑

ρ∈SN

N∏

n=1

1

(2π)3

∫

V

d3xn e
−i(pn−pρ(n))·xn ,

(B.5)

which is precisely (82).

For a state with N+ particles and N− antiparticles, the
validity of (97) can be argued for with a similar argument,
i.e. by constraining the form of general terms like (B.2)
taking advantage of the limit V →∞. In the case of par-
ticles and antiparticles, the thermodynamic limit tells us
that

lim
V→∞

〈0|a1 . . . aN+b1 . . . bN−PV a
†
N+
. . . a†1b

†
N−
. . . b†1 |0〉

= 〈0|a1 . . . aN+b1 . . . bN−a
†
N+
. . . a†1b

†
N−
. . . b†1 |0〉

=
∑

ρ+∈SN+

N+∏

n+=1

δ3(pn+ −pρ+(n+))

×
∑

ρ−∈SN−

N−∏

n−=1

δ3
(
pn− −pρ−(n−)

)
, (B.6)

and this determines the form of the expression

〈0| a1 . . . aN+b1 . . . bN−PV a
†
N+
. . . a†1b

†
N−
. . . b†1 |0〉

at finite V to be (97). The absence of integrals mixing par-
ticle with antiparticle momenta such as

∫
d3xi e

i(pn+−pn− )·xi

is owing to the absence of such differences as arguments of
the δs in (B.6).
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